Pressure compensating valve

Screw-in cartridge

- 2- and 3-way operation
- $Q_{\text {max }}=25 \mathrm{l} / \mathrm{min}$
- $\mathrm{p}_{\text {max }}=350$ bar

M22x1,5
 ISO 7789

DESCRIPTION

Pressure compensator valve with fixed settings, in screw cartridge construction with M22x1,5 thread for cavity acc. to ISO 7789. The valve is available in a 2 or 3 way design. The one-piece cartridge is made of steel. The external parts are zinc coated and therefore protected against rust.

FUNCTION

The pressure compensator valve keeps the pressure difference between inlet pressure at port P and the pressure in output port A or B on the directional valve nearly constant. It ensures that, for a given actuating spool position, a precise amount of oil, which is not dependent on load pressure, flows through the directional valve. Pressure compensating valves are mostly used in conjunction with proportional valves.

APPLICATION

2-way pressure compensating valve: Volume flow changes resulting from pressure or load changes in the consumer are corrected. Cylinder or motor speeds remain constant. If several consumers are operating in parallel, the full system pressure is available to each one.
3-way pressure compensating valve: Surplus output flow is cost-effectively led to the return system. This prevents the hydraulic system from overheating, especially in mobile systems which lack the necessary cooling surfaces. Parallel operation is not possible. If there are several consumers the pump pressure is set at the maximum working pressure. Important: Pressure compensators are only suitable for open loop control.

GENERAL CHARACTERISTICS

Designation

Construction
Type of fastening
Ambient temperature
Installation position
Tightening torque
Weight:

2- and 3-way pressure compensating valve Screw cartridge for cavity acc. to ISO 7789 M22x1,5 screw thread $-20 \ldots+50^{\circ} \mathrm{C}$ any $M_{D}=50 \mathrm{Nm}$
$\mathrm{m}=0,4 \mathrm{~kg}$ (2-way operation) $\mathrm{m}=0,4 \mathrm{~kg}$ (3 -way operation)

HYDRAULIC CHARACTERISTICS

Hydraulic fluid
Max. permissible contamination level

Viscosity range
Hydraulic fluid temp.
Peak pressure
Differential pressure
max. volume flow Leackage volume flow
mineral oils, other media on request
ISO 4406:1999, class 18/16/13
(Recommended filter gauge $13 \ldots 10 \geq 75$)
see also data sheet 1.0-50/2
$12 \mathrm{~mm}^{2} / \mathrm{s} \ldots 320 \mathrm{~mm}^{2} / \mathrm{s}$
$-20 \ldots+70^{\circ} \mathrm{C}$
$\mathrm{p}_{\max }=350$ bar
$p_{\text {Diff. }}=10$ bar
other differential pressures on request
$Q_{\max }=25 \mathrm{I} / \mathrm{min}$
see curve

SYMBOLS

2-way operation
3-way operation
x (3)

MECHANICAL ACTUATION

Fixed setting design. Other differential pressure available on request.

PERFORMANCE CHARACTERISTICS Oil viscosity $v=30 \mathrm{~mm}^{2} / \mathrm{s}$

DIMENSIONS / SECTIONAL DRAWINGS

PARTS LIST

Position	Article	Description
10	160.2188	O-ring ID 18,77x1,78
20	160.2156	O-ring ID 15,60×1,78
30	160.2120	O-ring ID 12,42x1,78
40	049.3196	Back-up ring RD 16,1×19x1,4
50	049.3176	Back-up ring RD 14,1×17x1,4

ACCESSORIES

Cartridge installed in sandwich plates
Sandwich valve
register 2.5

Technical explanation see data sheet 1.0-100

